If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X-256=0
a = 1; b = 8; c = -256;
Δ = b2-4ac
Δ = 82-4·1·(-256)
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{17}}{2*1}=\frac{-8-8\sqrt{17}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{17}}{2*1}=\frac{-8+8\sqrt{17}}{2} $
| 224-x=112 | | 7y+6=8-2y | | 73+3x=94 | | 4x+66=180 | | -65+8x+x^2=0 | | 8x-20=2x-36 | | y=11.7+1.02(61)= | | y=11.7+1.02(77)= | | -20–6+2g=14+7g | | 5x-30+5/2x-15=180 | | a=1.06*4.00 | | 6/x+0.14=0.29x= | | 3.2x+.16x=320 | | 6(x-2)-(4x+6)=5(2x+6) | | 16x/3=180 | | 342+x=104 | | 2x-x+4=5(x+6) | | 2(x-4)=5(x+6) | | 2x-(+13)=8x+7 | | 2(x+13)=8x+7 | | 24x+8=80 | | 13-2x=8x+7 | | 2x+13-x=8x+7 | | (x-2x)+13=8x+7 | | x-2x+13=8x+7 | | -2x+13=8x+7 | | (-2x+13)=8x+7 | | (-2x)+13=8x+7 | | -33x^2-68x-32=0 | | 3(4w+4)+2w=7(w+7)-30 | | x-14=6x+6 | | 9x+5=2x^2 |